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Abstract: An approximate equation for the nonsteady-state propagation of 

rectilinear cracks was derived and the problem of the equilibrium and 
propagation of a symmetrical systeras of cracks in an elastic-brittle 
material was analyzed. 

1. Approximate equation of crack propagation. There have been 
very few pnblished papers [1-3] in which crack propagation is 
analyzed with the aid of exact solutions of the dynamic equations of the 
theory of elasticity. Due to considerable mathematical difficulties, the 
authors of these papers usually started from such artificial formulations 
of the problem that the solutions obtained do not lend themselves to 
physical interpretation. It is therefore natural that many attempts have 
been made to obtain an approximate description of crack propagation 
in terms more closely corresponding to real conditions. One of the 

first studies of this kind was carried out by Mort [4] who, having 
supplemented the usual energy equation of equilibrium for a crack [5] 

O W I  Ol = OF~ t a l  (1 .1)  

with a derivative a T / ~ l  (where T is kinetic energy and l the crack 
length), 

OW / al = a I I  / Ol -t- aT~ O1, (1.2) 

obtained a simple formula 

V = k V'E7 p (l - -  l0 / 0 '/~. (1 .3)  

Here W is the potential energy of deformation, 1I is the surface 
energy, E is Young's modulus, p is the density, 10 is the length of an 
equilibrium crack, and k is an empirical constant. Mott used a static 
expression for the potential energy of deformation which appears to be 
justified, sinceexperiments carried out at a much  later date by Wells and 
Post [6] showed that the stressed state in the vicinity of a growing crack 
is not substantially different from the static case; the same investigation 
showed that formula (1.3) is in good qualitative agreement with ex- 
perimental data though it slightly overestimates the velocity ( at k = 

= 0.88). It should be noted that Mott's analysis is based on an 
approximate formulation of the problem and that Eq. (1.2) does not 

satisfy the conservation energy law. 
In fact, if the work done by external forces is denoted by A, we 

should have 

dA d W  d T  dII 
cu at + --37- + -JU" (1.4) 

Since the zone boundary varies with time, d /d t  = 0 / a t  + O/Ol V ,  
where 0 / 0 t  denotes a derivative with respect to time at a constant 

boundary. It is evident that 

OA OW o r  dg OH v. (1.5) 
o--E= ri- + ~? , -dg = Jg 

On the other hand, in accordance with the theorem of the potential 
energy of deformation [7] in the plane ease, 

A = 2W @ I i  p (u &'u~ + v ~ ) dx dy, (1.6) 

where u and v are components of the displacement vector. Combining 
( 1 . 4 ) - ( 1 . 6 ) ,  we obtain 

OW aT OH 0 f l  ( 02u ~ ) d x d y .  (1.7) 
O--7 ~ --gi - + O l O l p u ~ + v 

It will be seen that this expression differs from (1.2) in that 
it has an additional term on the right-hand side. 

Let us consider the following problem. Let there be in an elastic 
material, an equilibrium crack whoselengthandtensiIeload atinfinity 
satisfy the following condition: 

N = f .  (i. 8) 

Here N is the stress intensity coefficient and K denotes the 
constriction cohesion coefficient. 

At the initial instant t = t 0, the tensile force instantaneously 
increases to a level p > P0' The problem is to determine the crack 
propagation velocity. First of all, we reject the condition of the 
smooth joining of the crack edges and retain only the physically 
necessary condition of the finiteness of stress. 

The following assumptions are made. 1) The displacement vector 
components at any moment are determined in the same way as in 
the static problem; 2) the different between the applied external 
forces and the cohesive forces in the crack tip is balanced by forces 
of inertia, 

Let ns consider a particle of the material adjacent to the iriternal 
crack surface at a poin~ a small distance s from the crack tip. if the 
velcoity of the progressive movement of the tip region is V,  (accurate 
to small values of higher order) at this point we have 

Ov _ V - - .  &' (1, 9) 
Ot Os 

This velocity is attained by the particle in a time on the order 

of s / V ,  so that the acceleration 

O~v V ~ Ov ( V = 4 1 - - v s N ~ + 2 ) .  (i. i0) 
Ot ~" s Os E 

In accordance with the first assumption, we obtain 

O'av 2V ~ ( t - v  2) N 
Ot -~a = E s % (1.11) 

It is easy to show that the derivative 8Sv/0x 2 has a value of the 
same order of magnitude. In fact, according to [8] 

v - 4 ( l - v ' ~ )  Imq)(z), ( p ( z ) :  P ]/-zm7~--I ~. (1.12) 
E 

Consequently, at I x [ <- l ,  

02v 2p(t - -v~)  [ x 2 1]. 

At the d is tances= l - x << I from the crack tip, 02v/0x 2 hasa  

value on the order of 

N (1 -- vD / Es'< 

in purely formal terms, the dynamic equation, 

(L-,'- ' O0 txAv = Oh, ~ ~-v T P Wr-,' (1.14) 

becomes static in the vicinity of the crack tip if N is replaced by 

N i t _ _  k V'a9 - --g--} ( L  15) 

where k is an empirical factor. 

Using the second assumption, we take 

N --  K = k N  V~ ~, ( l . lB)  

To determine the unknown constant k, we postulate, a priori, that 
the rate ol: crack widening should be equal to the velocity of 

propagation of Rayleigh waves e; this postulate is based on the known re- 
sults of the exact solutions of dynamic problems [1-3]. 
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Fig. i 

Thus, from (1.16) we obtain the final expression 

v = ~  (1 - N ~ (~. ~7) 
In the case for which crack propagation takes pIace under the 

influence of a coustant tensile stress, formula (1.17) can be written 

in the form 

where Io is the length of an equilibrium crack and ~ is the crack 
length at a given instant. 

Relation (1.18) is reproduced graphically in f ig.  1 (curve 1); 
formula (1.3) curve 2 is also plotted with three experimental  points 
obtained in [6]. 

The problem of crack propagation (from rest) at a constant 
velocity was studied in [3, 9]. In this case, 1 = l0 + Vt, or , i f  the 
initial crack length is neglected,  I = Vt so that the stress intensity 
coefficient 

p V~7 N =  V~ (~. ~9) 

It follows, from (1.17), that the cohesion modulus should be pro- 
portional to t ~/~. This case. it was shown in [9], is realized if the 
crack tip region increases at a velocity which is constant for a given 
material .  In these circumstances,  instead of the cohesion constriction 
modulus K, we introduce a new mater ia l  characteristic R which is 
related to K by 

K = R 1 / ~ .  (L  20) 

Substituting (1.20) and (1.19) into (1.17), we obtain 
p ] / c  _ 2 

Relation (1,21) is represented by a heavy solid line in Fig. 2, which 
also contains graphs obtained in [9]. 

As shown by the data in Figs. I and 2, formula ( t .  17)-which is 
based on simplifying assumptions-describes quite well the results 
obtained by other authors. 

2. Equilibrium of a system of parallel cracks. This paragraph is 
devoted to the problem of equilibrium of an infinitely large number 
of parallel cracks (whose length are 2/ and 2m and which are spaced 
at a distance h) in an elastic body to which a constant tensile stress p 
is applied at infinity (Fig. 3). 

The walls of the cracks, which are regarded as slits, are free 
from stress. Let us solve this problem by an approximate method 

p ~  

, I  

fg l 
z/e 

Fig. 2 

postulated in [i0]. By superposi1~g omnidir ectioual uniform compression, 

O'y ~ (Jx = -- P ,  

onto the existing stressed state i.e., we reduce the problem under con- 
sideration to a problem with zero stress at infinity and given stresses 

at the crack edges. Since the system is symmetr ica l  relat ive to any 

straight iine mnuing along one of the cracks, the analysis eatr be 
i imited to only one baud 0 -< y -< h (Fig. 4). For the boundaries of 
this zone we have the followitlg equations: 

(rx = (~y = - - p , y = O , [ x l ~ l ; t l ~ h ,  l x l ~ m  (2.1) 

and, by virtue of the symmetry  

Ov 
G x ~ / = 0 , - ~ - x = 0 ,  y - - 0 ,  I x ] > / ;  y = h ,  l x l > m .  (2.2) 

Here and henceforth, the fol!owing generally accepted notation is 
used: Ox, Oy, Oxy denote stress tensor components,  while u and v are 
displacement vector components.  

Applying to the analysis of this stressed state the Itolosov-Muskhe- 
lishvili method [8], we obtain expressions relating stress and dis- 
p lacement  to two analytical functions ~o (z) and ~b(z): 

~x + (~u = 4 Recp' (z), 

~y - - ( r x +  2irsxy = 2 [zCp" (z) -}-~' (z)], 

2~* (~ + iv) = • (z) - -  z q)' (z) - -  ~0 (z), (2.3) 

where/~ is the Lamfi constant and y the Poisson ratio.  
It is easy to show that conditions (2. i)  and (2.2) are reduced, as a 

result of (2.3),  to boundary conditions for one analytical function 

Re <p" (z) = - -  p 

y = h ,  I x l % r n ;  (2.4) 

Irnq)'(z) = O, g = O, f x l >  l; / ] =  h, lx2.1> m. (2.5) 

This boundary problem is solved in the following way. A function 

= ~ / h  (2.6) 

maps the baud in question on the upper half-plane ~ > 0 with the 
correspondence of points illustrated in gig. 5. For the function 
f G )  = ~ '[z(~)] ,  we have the following bonndary conditions: 

R e / ( ~ ) =  - - p  - - a l < ~ < - -  t 
2 ' a--~-' 

~ < ~ <  t__, n = 0 ,  (2,7) 
a2 

I m / ( ~ ) = 0 ,  - - - - t  < ~ < a 2 ,  ~ >  t , 
(~1 a2 

~ < - -  al, ~1=0,  

~ a l = e  7?-~ , a 2 = e  F~ ) .  (2.8) 

7 

Fig. 3 

_ BI Yl 4 
-m " lh +m -- 

Fig. 4 
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I m ~ 0  -a, Igs ~ ' = - ~  - !lOt I~[ ~':~ ae I/~~':-~_#10~Im~/:~ ~-E 

Fig. 5 

A solution of this problem can  be obta ined with the aid of the 

Keldysh-Sedov formula [11]. 
In the class of i lmctions which h a v e  in tegrab le  s ingular i t ies  at  the 

ends of the segments  A 1 B 1 and A~ B 2 (Fig. 5), this solut ion is 

ob ta ined ,  accura te  to two arbi t raryconstants  Y0 and y~, and has the 
fol lowing form: 

~o + ~x~ 
+ ]/-(~ + ax) (~ + a~ -~) (~ - -  a~) (~ - -  a~-~) 

( g ( O = V  (~ +aa-')(g--a~-~)). (~ + a~) (~ - a~) (2.9) 

The r ad ica l  branches are chosen in such a way that  they have  
pos i t ive  va lue  at g >t /az .  T h e v a l u e  f ( g ) a t  inf in i ty  is equal  to zero. 

Let us a n a l y z e  the s ingular i t ies  at  points A~, B~, A 2, and ~ .  It 

is eas i ly  deduced from (2.9)  and (2 .6)  tha t ,  when these points are 

approached from outside segments  A1B ~ and A 2 B2, the v i r tua l  part of 

the function approaches inf in i ty ,  i, e . ,  increases as (const /4-s), where 
s is the  d is tance  from a g iven  point ( smal l  in comparison with the 

c rack  length) ,  name ly :  

at point A t 

V- ?o -- T~a~ . t+ 
z~ = 2Re q0' = ]/" ai  (ai -- ai -l) (a~ @ a~ ) (al + a2-i) ' ~ ~ 

N~ (2.10) -~-i? ~, 

at  point B~ 

2~e ~, p ] /~  (al - -  al-1) (al-I -~ a2-1) ~ , @ 8  - 
ai-1 (ai -i @ a.~ -i) 

T o - - - -  al 

]~g l  "2i (a I - -  a1-1) (a1-1 ~- a2) (at -1 -7 a2 -t) 

- -  NI" 

- V ; ,  

h 
~3 

at point A 2 

2Re q; : 

(2. li) 

"to + ~'aa~ 

N~ 

e T 

(2 ,12)  

and at point B 2 

2 R e e p ' = p  l /  ia~-'-4-a~ (-a2-1 - -  a2) . i /  ~ _  + 
V (a2 -~ - -  a~) a~. -~ ~ ns 

"to "4- "h/a2 
'--h- N~" 1 /  + 

(2 .13)  

To de te rmine  constants Y0 and Yl, we s t ipula te  that  the fol lowing 
equations (fol lowing from the phys ica l ly  ev ident  condi t ion  of symmet ry  

r e l a t i ve  to the y axis are sat isf ied:  

N 1 = NI' , N 2 = N2'" 

From (2.14) and ( 2 . 1 0 ) - ( 2 . 1 3 )  we obtain 

7o = P (al, a2 --  1), T1 = P (az -- al), 

(2. i4) 

(2. i~) 

- s  r a~ (a~ - -  1) 
N1 = p - f  (al -~- a2) (1 -t- ala2) 

a~ (t -- a.y) 
N e = p  / - ~ -  r (a, + a~)(t q-ala2) " 

In accordance  with the theory of equi l ib r ium cracks [7], the la t ter  
are at rest i f  the stress in tensi ty  coef f ic ien t  is equal  to the cohesion 

modulus K: 

N.t : N 2 = K. 
(2 .17)  

Substi tuting (2.16)  here ,  we find that  

t I /  t~ th  ~! a l = - - ,  l = m ,  N I = N 2 = p  ~, ~n--  -~-.  (2 .18)  
a2 

Thus, the system of cracks under considerat ion can be at equ i l i -  

br ium i f  they are of the same length;  at the same t i m e ,  

p2~h th  nl  = K 2  
2n n (2.19)  

and, for h / l  "~ ~ ,  obta in  an expression 

P2l = 2K2, (2 .20)  

which coincides  wi th  the corresponding formula for a s ingle  crack.  

In the second l i m i t i n g  case of c lose ly  s i tuated cracks (i. e . ,  for 

h/1 -+ 0) the equ i l ib r ium spacing be tween cracks does not depend on 

their  length:  

h 2r~K2 
= - - 7 - '  (2 .21)  

Let us now assume that  the system of cracks in Fig. 3 is present in 

a body and that  t ens i le  stresses such tha t  N 1 > K and N 2 > K ar~ 

ins tamaneous ly  appl ied  to this body. 

The cracks wi l l  then start to propagate;  the longer cracks wi l l  

propagate  faster, s ince N 2 > Np After a w h i l e ,  t h e r a t i o  of the c rack  

length  may  b e c o m e  such th ta ,  for the shorter cracks,  N 1 wi l l  b e c o m e  

smal le r  than K. In these c i rcumstances ,  some of the  shorter cracks 

wi l l  c lose up. In this case ,  the c rack  propagat ion ra te  should 

obviously be g iven by 

V = c  ( +  - - i )  '1~. (2 .22)  

3. Propagation of a system of cracks.  Let us ana lyze  the problem 
of the propagat ion of a system of cracks of two different  lengths (shown 

in Fig. 3) from the standpoint  of the approx imate  theory developed in 

paragraph 1. We have  

d~t NT; ' at ~ ' (3.1) 

where N l and N 2 are def ined by formulas (2.16) which,  after t rans-  

format ion,  can be wri t ten  in the  form 

( h ~ % ( s h ~ , n  , ~ ( m - c t )  , : x ( m - - l ) \ ' A  N~=P\'YYJ \ - - U - s c n ~ s c u ~ 2 Y - - )  , 

f h \1/s - ~l n ( m @ l )  �9 ~t(m--l)~ 1/2 ., (3 .2)  

The i n i t i a l  c rack  length  values  are denoted by m 0 and lo. The 
corresponding values of a l, a z , N 1, and N 2 are also denoted by a 

zero index.  From (3.2) ,  i t  follows that  

N~ { ~i ~m ~/2 
N~ - [sh--Z-csch -Z-) ' (3.3) 

so tha t ,  for l > m and N 2 > N 1. 
If N10 = K and N20 = K, the cracks do not widen.  For N10 < K < 

< Nz0, the  short cracks close up and the long cracks b e c o m e  wider.  

2 1 2  



Finally, for N10 > K and Ns0 > K, widening of each type of crack 
takes place at rates giveu by Eqs. (3.1). Since these rates are not the 
same, hr time, N t may become smaller than K and the widening 
of short cracks will cease. 

Consider the case of cracks situated close to each other 

[ llZ 

,Z- >> ~->> I. (3.4) 

In this case, Eq. (3.1) can be written approximately ill the form 

dm _ c [ t _  K l ~ e  =(I-m)K 11" (3. 5) 
~t 7 -  t / T j 

h- 
dt L ~ -  V ~ - I  ' (3,6) 

Thus, the velocity of long craeks is constant while that of short 
cracks diminishes becoming zero when 

l - - m =  2h  in P l /  :-t 
a ~ - / /  -7/J (3.7) 

If all the cracks are of the same length, their velocity is given 
by a single equation, 

~ - =  ~ , N = p  ~ t h e - .  (3.8) 

Let us analyze this equation in terms of stability. Assume that 

/ 7 -  
1 = 1 0 "  e, ~<~lo ,  N ~  V 7~-n V t h ~  �9 (3.9) 

Substituting (3.9) into (3.8) and performing the appropriate expan- 
sions with respect to sma l l  6 to terms of first order, we obtain 
(assuming thad d l0 /d t  # 0) 

de dlo K are t 
dt dt N o - -  K 25 alo 

sh ~ _ _  (3. i0) 
h 

which, taking hrto account (3.8), canhe integrated iu ttle form 
e - -  eo dlo (3.11) 

c dt ' 
where s o is the maguitnde of tile Initial perturbation. 

Thus, if the velocity of the system of identical cracks is, at some 
instant, increasing, a small disturbance will also increase; the motion, 
in this case, is unstable. If, however, the velocity is decreasing, the 
motion is stable. The propagation of a system of identicai cracks has 
all instability of another kind. Let us imagine that each alternate crack 
increased its length by the same atnonnt so that a system shown in Fig. 3 
is obtained. The propagation of such a system is described by Eq. (3.1). 

It is easy to show that the system of eqnations (3.1) is unstable. 

If small perturbances m and l are denoted by x and y, 

m =  1 o - y ,  l = l o @  x, x, g ~ lo; (3 ,12)  

expanding the right-hand portions of (3.1) into Taylor's series to terms 
of first order, we obtain the following system of linear differential 
equations: 

dx dy  __ 
dt - -  A (ay -}- ~x), d~-t- - -  - -  A (ax @ ~y),  (3.13) 

where 

arc K (1 - -  K ) %  t th alo 
A--47~ No ~-o ' ~ =  2 T '  

= c t h  a/o i th ado 
h 2 h ' 

Its characteristic equation is in the form 

*~ - -  (p~ - -  ~)  = 0, 
(3. S4) 

since 

~o __ 32 ~ csehO _ ~ _ .  

Hence we arrive at the instability of Eq. (3.1). 
4. Brittle fracture under explosive loads. Many materials that are 

not brittle in the usual sense of this term, fail by the mechanism of 
crack formation under the influence of suddenly applied loads 

exceeding their strength, Materials of this kind include metals. Figure 

8 shows radiographs of an aluminum ring taken at various stages of its 
fracture (numbers ascribed to these radiographs indicate time in 
microseconds). 

The matehematie theory of equilibrium cracks is not concerned 
with the problems associated with crack formation; it simply makes 
it possible to calculate the strength of a material ill the presence of 
cracks of a given configuration, This leads to certain difficulties in 
interpreting the results obtained. In fact, in the above-considered 
problem of uniform straining (ill tension) of an elastic-brittle body, 
the following four variants of crack formation (under the influence of 
identical loads applied at infinity) are possible. 

1) A single equilibrium crack, of length given by Eq. (2.20), is 
formed. 

2) A system of equilibrium cracks is formed; the length of the 
cracks and ttmir spacing are given by gq. (2.19). 

3) A single growhrg crack is formed; its length is larger lhan the 
equilibrium value and the speed of its pro pagatio n is given by Eq. (1.21). 

4) A system of cracks propagating at a velocity described by Eqs. 
(1.20) and (2.18) is fornred. 

To resolve these difficulties, let us utilize experimental data. 
The length of a single equilibrium crack is related to the strength of a 
given material. If the real strength of a material is o*, in accordance 
with (1. i0) and (2.20) we have 

It is known that, in terms of the order of magnitude, the 
theoretical strength o T is give~ by 

cr~ ~ OAR. (4.2) 

Following [!2], we take 

~ 0 A  b E, (4.3) 

where b is the interatomic spacing. 

Then, if a denotes a number showing how many times less the real 

strength of a material is than its theoretical strength, it follows from 
(4. 1)-(4, 3) that 

lo ~ tOa2b. (4.4) 

For instance, in the case of nrild steel and Duralumin a ~ 102 ' 
so that 

l o N 105b = iO-a ca. (4.5) 

Sometimes the tern1 "dynamic strength" (which is higher than the 
strength determined in static tests) is used; in this case, one has in 
mind the fracture of a specimen at only one place, i, e . ,  the 
formation and propagation of a single crack. In terms of the theory of 
equilibrium cracks, this means that the length of cracks corresponding 
to dynamic strength is smaller than the length in the case of static 
strength. 

It should be noted that we have been discussing the tensile stress, 
If a sufficiently thin elastic ring is sub, coted to an internal pressure 
P0, each element of the ring is under a tensile stress which is 
approximately given by 

r 
% - p 0  ~ - .  (4.6) 

As shown by experiment (Fig. 6), if P0 is sufficiently large so that 
o 0 > a . ,  numerous cracks are simultanenously formed in such a ring. 

This means that the first and seocnd variants are not realized in 
this case and that the third and fourth variants are possible. As a 
result of the above-mentioned equilibrium instability, the regime 
can easily change from the second to the fourth variant. 

When the ratio 5 / r  is small, each element of the ring may be 
regarded as partofaband ofwidth 5 under the influence of the tensiIe 
stress p applied at infinity. Going further and neglecting (in first 
approximation) the influence of the free boundaries, we obtain the 
problem of the propagation of a system of cracks in an infinite plane. 
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Figr 6 

Tt~e simplest model of such a system is the system of parallel cracks 
considered in paragraphs 2 and .3. If one accepts an addttio hal hypothesis 
that the length of each crack is determined only by the material 
strength in accordance with formula (4.4), the distance between the 
initially formed microcracks is given by 

p~h th ~lo = K  ~. 
2n /z 

As pointed out in paragraph 3, this system of cracks is unstable. 
Specifically, if each alternate crack is lengthened by the sanre amount, 
the longer cracks wili grow faster and the shorter cracks will grow 
slower than previously. After a while, the shorter cracks will stop 
growing and will start closing up. The presence of short cracks may 
therefore be neglected. This leads to the formation of a new system of 
cracks with doubled spacing between them. Let us denote by N2* the 
stress intensity coefficient for a system of cracks with the spacing 2h 

N2*= p / Z  (th =l y/~ 
,, ~ 1  " ( 4 ,  ~ )  

Let us now equate Nf to N z, defined by the second formula of (2.16). 
After transformation, the ration N~/N s can be written in the form 

N~*=(t__Fsh.. ~mseh.. ~l~/~ 
N~ \ 2-~- ~ - ]  . (4. 8) 

If the crack length is e times larger than the initial length, this 
ratio differs from unityby i-i0%, depending on tile ratio lo/h. 
Thus, if the crack length at a given moment is l, the number of 
dnplication acts n is equal to 1 n ( l / lo)  and the distance between the 
cracks i s h = h  0 2 n. Hence, we obtain 

h = ho ( _ t ~  E'~. \ lo ] (4, 9) 

As an example, let us consider explosive fracture of a steel ring 
(Fig. '/). Fracture under relatively low loads is quite symmetrical and 

the scatter of the data for the dimensions of the resulting fragments is 
small. 

Data on the length 0G mm) of fragments obtained as a result of 
the fracture of mild steeI ring (diameter c~ = 80 ram, width 8 = 9 ram, 
thickness 6 = 10 mm) under the influences of a shock wave produced by 
an 80 g explosive charge are reproduced below: 

No. 1 2 3 4 5 6 7 8 9 t0 11 t2 
H, mm 49 37.5 32 33.5 4t 34 31 18 10.5 t5.5 21 t9.5 

Another set of data for rings 2.6, 4.6, and 9.0 mm thick is given 
below; these data include the experimental values of the length of 
fragments HE (averaged for three experiments), theoretical vatues of 
the lengths H T calculated from formula (4.9) and, for comparison, tt E 
and H T in a dimensionless form. 

8, mm HE, mm HT, mm HE/2.6 HT/0.495 

2.6 10.2 4.95 1 1 
4.6 t7.7 7.4 1.7 1.5 
9.0 28.5 12.8 2.7 2.6 

The initial spacing between cracks lbr given p and o, is given 
by the following expression: 

h th ~lo 6, ~" 

If, accordingtothis formula, the tensile stress p is 10% larger than 
the strength of a given material, the distance between initially 
formed cracks exceeds their length by one order of magnitude since, 
taking into account (4.5), we have 

h o N 10-2 cm. (4.11) 

If, as mentioned above, the D ffluence of free boundaries is 
neglected, the length H of a fragment is given by formula (4.9) in 
which the crack length l is taken to be equal to the band width (ring 
thickness)6. For 6 = 1 cm, the length of a fragment is also on the 
order of 1 cm which agrees with tire experimental data (see above). As 
for the dependence of H on the ring width, it is satisfactorily described 
by formula (4.9) for h 0 = const. Generally speaking, if a ring is under 
quasi-static loads, it follows from (4.6) and (4.10) that h 0 should 
depend on the ring width. If, however,the initial stressed state is 
produced by a shock wave, the tensile stress and, consequently, h 0 do 
not depend on the ring width. 

Thus, it has been shown that the above-analyzed model of crack 
formation is in quite good agreement with experiment. Naturally, 
such a model appears rather artificial; however, the process of 
%cteening ~ small cracks by Iarger cracks has a clear physical meaning: 
tire existence of a large and a small crack leads to stress relaxation 
in the vicinity of the latter. 
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