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Abstract: Anapproximate equation for the nonsteady-state propagation of
rectilinear cracks was derived and the problem of the equilibrium and
propagation of a symmetrical systems of cracks in an elastic-brittle
material was analyzed.

1. Approximate equation of crack propagation. There have been
very few published papers [1~3] in which crack propagation is
analyzed with the aid of exact solutions of the dynamic equations of the
theory of elasticity. Due to considerable mathematical difficulties, the
authors of these papers usually started from such artificial formulations
of the problem that the solutions obtained do not lend themselves to
physical interpretation. It is therefore natural that many attempts have
been made to obtain an approximate description of crack propagation
in terms more closely corresponding to real conditions. One of the
first studies of this kind was carried out by Mott [4] who, having
supplemented the usual energy equation of equilibrium for a crack [5]

oW [ 8l = a1l [ 41 (1.1)

with a derivative 8T/ 81 (where T is kinetic energy and [ the crack
length),

oW [ 9l = oIl / 1 + oT / i, (1.2)
obtained & simple formula
V=k VEjp(— /)" (1.3)

Here W is the potential energy of deformation, II is the surface
energy, E is Young's modulus, p is the density, 7, is the length of an
equilibrium crack, and k is an empirical constant. Mott used a static
expression for the potential energy of deformation which appears to be
justified, sincéexperiments carried out at a much later date by Wells and
Post (6] showed that the stressed state in the vicinity of a growing crack
is not substantially different from the static case; the same investigation
showed that formula (1. 3) is in good qualitative agreement with ex-
perimental data though it slightly overestimates the velocity ( at k =
= 0.38). It should be noted that Mott"s analysis is based on an
approximate formulation of the problem and that Eq. (1.2) does not
satisfy the conservation energy law.

In fact, if the work done by external forces is dencted by A, we
should have

dA aw a7 dIl
w4 = a tTa Tt (1.4)

Since the zone boundary varies with time, d/dt = 8/8t+3/81 V.
where 8 /9t denotes a derivative with respect to time at a constant
boundary. It is evident that

oA oW 8T dir _ oIl ¢,

T ot Tdr T el

On the other hand, in accordance with the theorem of the potential
energy of deformation [7] in the plane case,

¢ o2u e )
A= - T2 e 2 ) dxdy,
2w %S:)P(u az )Y
where u and v are components of the displacement vector. Combining
(1.4)—(1.8), we obtain

oW ar aIl Y ( u 92
7=W+7—WSSP “m T g

(1.5)

(1,6)

v
2

)dxdy. (1.7)

It will be seen that this expression differs from (1.2) in that
it has an additional term on the right-hand side.
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Let us consider the following problem. Let there be in an elastic
material, an equilibrium crack whose length and tensile load at infinity
satisfy the following condition:

N=K. (1.8)

Here N is the stress intensity coefficient and K denotes the
constriction cohesion coefficient.

At the initial instant t = ty, the tensile force instantaneously
increases to a level p > p;. The problem is to determine the crack
propagation velocity. First of all, we reject the condition of the
smooth joining of the crack edges and retain only the physically
necessary condition of the finiteness of stress.

The following assumptions are made. 1) The displacement vector
components at any moment are determined in the same way as in
the static problem; 2) the different between the applied external
forces and the cohesive forces in the crack tip is balanced by forces
of inertia.

Let us consider a particle of the material adjacent to the internal
crack surface at a point a small distance s from the crack tip. If the
velcoity of the progressive movement of the tip region is V, (accurate
to small values of higher order) at this point we have

dv ar
T

This velocity is attained by the particle in a time on the order

of §/V, so that the acceleration

(1.9)

[iar) Ve dv 1 — v :
e~ e V=4 —_ " Ns¥2).
T Aaraly A 7 (1.10)
In accordance with the first assumption, we obtain
@ _ wrl—v) N
7 = (1.11)

7
It is easy to show that the derivative 8%v/ax® has a value of the
same order of magnitude. In fact, according to [8]

v:éLE_VE_) Im @(z), Q(z)= _;L V2=, (1.12)
Consequently, at |x| =1,
LA & il N R
Jx? E@r— z‘_’)”/zl.lz—;uz ] (1.13)

At the distance s = I — x<< { fromthe crack tip, 8*v/ox’ has a
value on the order of

N (1 — %)/ Es™,
In purely formal terms, the dynamic equation,

9%

90
L) phAe = .,
(‘”)ay"“’ P 3E

(1.14)

becomes static in the vicinity of the crack tip if N is replaced by

. Vo
NU*’“p—pJa (1.15)
where k is an empirical factor.
Using the second assumption, we take
k=N
N K =kN == (1.16)

To determine the unknown constant k, we postulate, a priori, that
the rate of crack widening should be equal to the velocity of
propagation of Rayleigh waves c; this postulate is based on the known re-
sults of the exact solutions of dynamic problems [1-3].
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Thus, from (1.16) we obtain the final expression

K\
V:CO%TV—) . (1.17
In the case for which crack propagation takes place under-the
influence of a constant tensile stress, formula (1.17) can be written

in the form
)"
V:C(iﬁl/”f) ’ (1.18)

where [y is the length of an equilibrium crack and is the crack
length at a given instant.

Relation (1.18) is reproduced graphically in Fig. 1 (curve 1);
formula (1. 3) curve 2 is also plotied with three experimental points
obtained in [6].

The problem of crack propagation (from rest) at a constant
velocity was studied in [3,9]. In this case, I =1, + Vt, or,if the
initial crack length is neglected, | = Vt so that the stress intensity
coefficient
PV

Vi (1.19)

It follows, from (1.17), that the cohesion modulus should be pro-
portional to t¥ ?, Thiscase, it was shown in {9}, is realized if the
crack tip region increases at a velocity which is constant for a given
material. In these circumstances, instead of the cohesion constriction
modulus K, we introduce a new material characteristic R which is
related to K by

N=

E=RV2. (1.20)

Substituting (1,20) and (1.19) into (1.17), we obtain
pVe 2

I
4 c?

Relation (1.21)isrepresented by a heavy solidlinein Fig. 2, which
also contains graphs obtained in [9].

As shown by the data in Figs.1and 2, formula (1,17)~which is
based on simplifying assumptions—describes quite well the results
obtained by other authors.

2. Equilibrium of a system of parallel cracks. This paragraph is
devoted to the problem of equilibrium of an infinitely large number
of parallel cracks (whose length are 27 and 2m and which are spaced
at a distance h) in an elastic body to which a constant tensile stress p
is applied at infinity (Fig. 3).

The walls of the cracks, which are regarded as slits, are free
from swress. Let us solve this problem by an approximate method

p*

S
&7/
N

postulatedin[10]. By superposing omaidirectional uniform compression,
Gy =0y = —p,

onto the existingstressedstate i.e., wereduce the problem under con-
sideration to a problem with zero stress at infinity and given stresses
at the crack edges. Since the system is symmetrical relative to any
straight line running along one of the cracks, the analysis can be
limited to only one band 0 =y =h (Fig, 4), For the houndaries of
this zone we have the following equations:

Op=0y=—=p,y=0lg<Ly=khlzl<m .1
and, by virtue of the symmetry

9
qu:O,_a.%:O, y=0, |z|>0L y==h lz|>m. (2.2)

Here and henceforth, the following generally accepted notation is
used: oy, Oy, 0xy denote stress tensor components, while u and v are
displacement vector components.

Applying to the analysis of this stressed state the Kolosov-Muskhe~
lishvili method [8], we obtain expressions relating stress and dis-
placement to two analytical functions ¢ (z) and ¢(z):

Oy -+ 0y = 4 Re g’ (2),
Oy — Ox + 200,y = 2 [z9" (z) + ¢ (z)],
2wt iv) =19 (3) — 29" (5) — P (2)> (2.3)
where |t is the Lamé constant and v the Poisson ratio.

It is easy to show that conditions (2. 1) and (2.2) are reduced, as a

result of (2. 3), to boundary conditions for one analytical function

Re@’(z)=~—,§~, y=0, jz|<h
y=h, Jx{<m; (2.4)

Img/ () =0,y=0,|z|>Ly=h |z >m &5

This boundary problem is solved in the following way. A function

¢ = et {2.6)

maps the band in question on the upper half-plane n > 0 with the
correspondence of points illustrated in Fig. 5. For the function
f§y = &'z (£)], we have the following boundary conditions:

Ref()=—L, —a<i<— ;—1

2

n<i<c L, n=0, @mn
ag
1 1
Im/(§)=0a — — <E<ay, E>—,
ay as,
E<—a, m=0,
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A solution of this problem can be obtained with the aid of the
Keldysh-Sedov formula [11].

In the class of functions which have integrable singularities at the
ends of the segments A B; and A, B, (Fig. 5), this solution is )

obtained, accurate to twoarbitraryconstants ¥, and ¥;, and has the
following formi:

o=l 1+

Yo+ 11§
VCraCtraC—od C—aD)
1/ Crant—ay
<5’ 0=y TCtaC—ay ) (2.9)

The radical branches are chosen in such a way that they have
positive value at § >1/q4. The value f(g)at infinity is equal to zero.
Let us analyze the singularities at points Ay, By, Ay, and Bs.
is easily deduced from (2.9) and (2. 6) that, when these points are
approached from outside segmernts AjB; and A, By, the virtual part of
the function approaches infinity, i.e., increases as (coust /¥s), where
s is the distance from a given point (small in comparison with the
crack length), namely:

at point Ay o
. , To— Ti%1 -
oy =2Re ¢'= —=
Y V ar(ar—arY) (@ + a2) (a1+ @277) s
=N (2.10)
Vs
at point By

(e —ar™) (@ + a4 o
a7t (a7t F a7 a5

i Y
- — 1) as

Va7 (a1 —- a7 (@7 o+ ag) (7t A a2

2Req¢ =p

_ N (2.11)
=V
at point A,

To 4 1182 o
4+ Gg) (@27 1—as) @2 s

2Re @’ = —

V(a1 + aa){eyt

= N (2.12)

Vs
and at point B,

;. (as™14-a1) (as? -—az) ]/
2Beq>—p]/ (ag-lgaz e +

=+ n/a —
Yo 1/02 ~— Ny

T Vot a) @t e (ot —as) at V== Vs
(2.13)

To determine constants ¥, and y;, we stipulate that the following
equations (following from the physically evident condition of symmetry
relative to the y axis are satisfied:
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Ny=Ny, Ny =Ny (2.14)
From (2.14) and (2.10)=(2.13) we obtain

Yo=p (o, & — 1), 71 = p (¢ — ),
ag (a1~ —1)
PV ‘/(a1+a2) TE
No=p l/ 23 (1 — aq?)
2 l/ (@1 + @3) (1 + aya9) *

In accordance with the theory of equilibrium cracks [7], the latter
are at rest if the stress intensity coefficient is equal to the cohesion
modulus K:

(2.15)

Ny=Ny =K (2.17)

Substituting (2.16) here, we find that

=1 _ . a
dl_-_zz., l_m, Nl— gﬁp‘/z—th (2.18)
Thus, the system of cracks under consideration can be at equili-
brium if they are of the same length; at the same time,

p*h al g
T =k (2.19)

and, for h/7— «, obtain an expression

PPl = 2K, (2.20)
which coincides with the corresponding formula for a single crack.

In the second limiting case of closely situated cracks (i.e., for
h/1 — 0) the equilibrium spacing between cracks does not depend on
their length:
2n K>

o

Let us now assume that the system of cracks in Fig. 3 is present in
a body and that tensile stresses such that N; > K and N, > K are
instantaneously applied to this body.

The cracks will then start to propagate; the longer cracks will
propagate faster, since Ny > N,;. After a while, theratio of the crack
length may become such thta, for the shorter cracks, N; will become
smaller than K. In these circumstances, some of the shorter cracks
will close up. In this case, the crack propagationrate should
obviously be given by

h=

(2.21)

V:c(% —1)‘/2.

3. Propagation of a system of cracks. Let us analyze the problem
of the propagation of a system of cracks of two differentlengths (shown
in Fig. 3) from the standpoint of the approximate theory developed in
paragraph 1. We have

(2.22)

dm :C(1—£>1/z, dal __ (1_ K )‘/27

_ —_— = —
dt Ny dt N (3.1)

where N; and N, are defined by formulas (2.16) which, after trans-
formation, can be written in the form

h \Ye am w(m 1) n(m— [)\"2
lep(ﬁ> <5h—n—sch o) sch —, ) s

ho\Ve nl n{m—+1) wm —1{) 3.2
Nz:f’(ﬁ) <Sh—5h % ST on ) (32

The initial crack length values are denoted by m, and7,. The
corresponding values of ay,d,, Ny, and N, are also denoted by a
zero index. From (3.2), it follows that

No ( h nl I wm )‘/2
N, = csch ;
so that, for7 > m and Ny > Nj.

If Njg = K and Ny =K, the cracks do not widen. For Nyy < K <
< Ny the short cracks close up and the long cracks become wider.

(3.3)



Finally, for Ny > K and Ny > K, widening of each type of crack
takes place at rates given by Eqgs. (3.1). Since these rates are not the
same, in time, Ny may become smaller than K and the widening
of short cracks will cease.

Consider the case of cracks situated close to each other

b

l
=gzt (3.4)
In this case, Eq. (3. 1) can be written approximately in the form

= (I—m)

e Ky (3:9)
dt P h
dl K a ]t .
”E_c[ E T] ~ 3.6)

Thus, the velocity of long cracks is constant while that of short
cracks dimiuishes becoming zero when

2h P 2
ol 2t 3

If all the cracks are of the same length, their velocity is given
by a single equation,

Al f K\ . ]/T 7 '
r U & RS S T )

Let us analyze this equation in terms of stability. Assume that

l—m=

e<€ly, No=p V/%]/thj%‘l. (3.9)

Substituting (3.9) into (3. 8) and performing the appropriate expan-
sions with respect to small € to terms of first order, we obtain
(assuming thad di, /dt = 0)

de dly K e 1

l=lo¢g,

a - dt No— K 2h gy O (3.10)
which, taking into account (3,8), canbe integrated in the form
g= % dho (3.11)

)
where & is the magnitude of the icnitfal perturbation.

Thus, if the velocity of the system of identical cracks is, at some
instant, increasing, a small disturbance will also increase; the motion,
in this case, is unstable. If, however, the velocity is decreasing, the
motion is stable. The propagation of a system of identical cracks has
an instability of another kind. Let us imagine that each alternate crack
Increased its length by the same amount so that asystem shown in Fig.3

is obtained. The propagation of such a system is described by Eq. (3.1).

It is easy to show that the system of equations (3.1) is unstable,
If small perturbances m and [ are denoted by x and y,

m= Iy, —y, =1+ =z z y <€ ly;

expanding the right~hand portions of (3.1) into Taylor's series to terms
of first order, we obtain the following system of linear differential
equations:

(3.12)

L~y 80, = a( L), (3.13)
where
e K ( K )*1/2 1 tly
=_0 21— = . = ___th "9
N, No = s

AT 1 iy
p— t .
B=c¢ h_h »_th___h .

2
Its characteristic equation is in the form

2 (B2 — ) =
§ ® a?) = 0, (3. 14)
since
B2 — af = csehz Yo
Hence we arrive at the instability of Eq. (3.1).
4. Brittle fracture under explosive loads. Many materials that are
not brittle in the usual sense of this term, fail by the mechanism of
crack formation under the influence of suddenly applied loads

exceeding their strength. Materials of this kind include metals. Figure
6 shows radiographs of an alwminum ring taken at various stages of its
fracture (numbers ascribed to these radiographs indicate time in
microseconds).

The matehematic theory of equilibriwin cracks is not concerned
with the problemns associated with crack formation; it simply makes
it possible to calculate the strength of a material in the presence of
cracks of a given configuration. This leads to certain difficulties in
interpreting the results obtained. In fact, in the above-considered
problem of uniforin straining (in tension) of an elastic~hbrittle body,
the following four variants of crack formation (under the influence of
identical loads applied at infinity) are possible.

1) A single equilibrium crack, of length given by Fq. (2.20), is
forined.

2) A system of equilibrium cracks is forimed; the length of the
cracks and their spacing are given by Eq. (2.19).

3) A single growing crack is foried; its length is larger than the
equilibrium value and the speed of its propagationis given by Eq. (1.21).

4) A system of cracks propagating at a velocity described by Egs.
(1.20) and (2.18) is formed.

To resolve these difficulties, let us utilize experimental data.
The length of a single equilibrium crack is related to the strength of a
given material, If the real strength of a material is 0%, in accordance
with (1.10) and (2. 20) we have

5, ~ 77F~ (4.1)
0
It is known that, in terms of the order of magnitude, the
theoretical strength o is given by

O ~ 0.1E, (4.2)

Following [12], we take

vy~01bE, (4.3)

where b is the interatomic spacing.

Then, if o denotes a number showing how niany times less the real
strength of a material is than its theoretical strength, it follows from
(4. 1)~(4. 3) that

1o ~ 10a2%, (4.4)

For instance, in the case of mild steel and Duralumin & ~ 10%,
so that

Iy ~ 105 = 1078 cx. (4.5)

Sometimes the term "dynamic strength” (which is higher than the
strength determined in static tests) is used; in this case, one has in
mind the fracture of a specimen at only one place, i.e., the
formation and propagation of a single crack. In terms of the theory of
equilibrium cracks, this means that the length of cracks corresponding
to dynamic strength {s smaller than the length in the case of static
strength.

Ir should be noted that we have been discussing the tensile stress.
If a sufficiently thin elastic ring Is sub,ected to an internal pressure
pg» each element of the ring is under a tensile stress which is

‘approximately given by

”
Oy =Py —.

[ (4.6)

As shown by experiment (Fig. 6), if po is sufficiently large so that
Og » G4, Dumerous cracks are simultanenously formed in such a ring.

This means that the first and seocnd variants are not realized in
this case and that the third and fourth variants are possible. As a
result of the above-mentioned equilibrium instability, the regime
can easily change from the second to the fourth variant.

When the ratio 8/r is small, each element of the ring may be
regarded as part of a band of width & under the influence of the tensile
stress p applied at infinity. Going further and neglecting (in first
approximation} the influence of the free boundaries, we obtain the
problem of the propagation of a system of cracks in an infinite plane.
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Fig. 6

The simplest model of such a system is the system of parallel cracks
considered in paragraphs 2 and 3. If one accepts an additional by pothesis
that the length of each crack is determined only by the material
strength in accordance with formula (4.4), the distance between the
initially forined microcracks is given by

PRy Ao
2 h
As pointed out in paragraph 3, this system of cracks is unstable.

Specifically, if each alternate crack is lengthened by the same amount,
the longer cracks will grow faster and the shorter cracks will grow
slower than previously. After a while, the shorter cracks will stop
growing and will start closing up. The presence of short cracks may
therefore be neglected. This leads to the formation of a new system of
cracks with doubled spacing between them. Let ns denote by N,* the
stress intensity coefficient for a system of cracks with the spacing 2h

h ml \Ye
Nt = ]/__ th _) .
i ( 2

Let us now equate Nj to Ny, defined by the second formula of (2,16).
After transformation, the ration N¥/N, can be written in the form

= K2,

(4.7)

Ng* o M _.ye AN\Y2
2 —=(1- h? 27 h? .
A ( sh? g s 2h>

If the crack length is e times larger than the initial length, this
ratio differs from unity by 1-10%, depending on the ratio I,/h.
Thus, if the crack length at a given moment is 7, the number of
duplication acts n is equal to 1n (7/1,) and the distance between the
cracks is h = hy 2", Hence, we obtain

— [ \Ing
e n ()

As an example, let us consider explosive fracture of a steel ring
(Fig. 7). Fracture under relatively low loads is quite symmetrical and

(4.8)
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the scatter of the data for the dimensions of the resulting fragments is
small. )
Data on the length (H, mm) of fragments obtained as a result of

the fracture of mild steel ring (diameter @ = 80 mm, width 8 = 9 mm,
thickness & = 10 mm) under the influences of a shock wave produced by
an 80 g explosive charge are reproduced below:

No. £ 2 3 4 5 6 7 8 9 10 11 142
H, mm 49 37.5 32 33.5 41 34 31 18 10.5 15.5 21 19.5

Another set of data for rings 2.6, 4.6, and 9,0 mm thick is given
below; these data include the experimental values of the length of
fragments Hp (averaged for three experiments), theoretical values of
the lengths Hy calculated from formula (4.9) and, for comparison, Hg
and Hp in a dimensionless form.

8, mm Hg, mm Hy, mm Hg/2.6 HT/0.495
2.6 10.2 4.95 1 1
4.6 17.7 7.4 1.7 1.5
9.0 28.5 12.8 2.7 2.6

The initial spacing between cracks for given p and oxis given
by the following expression:

hth nlo G, 2

_ %

nly h 2

if, according to this formula, the tensile stress p is 10% larger than
the strength of a given material, the distance between initially
formed cracks exceeds their length by one order of magnitude since,
taking into account (4.5), we have

hy ~ 1072 cm, (4.11)

If, as mentioned above, the influence of free boundaries is
neglected, the length H of a fragment is given by formula (4.9) in
which the crack length ¢ is taken to be equal to the band width (ring
thickness)8. For 8 = 1 cm, the length of a fragment is also on the
order of 1 cm which agrees with the experimental data (see above). As
for the dependence of H on the ring width, it is satisfactorily described
by formula (4.9) for hy = const. Generally speaking, if a ring is under
quasi-static loads, it follows from (4.6) and (4. 10) that h, should
depend on the ring width. If, however,the initial stressed state is
produced by a shock wave, the tensile stress and, consequently, by do
not depend on the ring width.

Thus, it has been shown that the above-analyzed model of crack
formation is in quite good agreement with experiment. Naturally,
such a model appears rather artificial; however, the process of
“screening” small cracks by larger cracks has a clear physical meaning:
the existence of a large and a sinall crack leads to stress relaxation
in the vicinity of the latter.
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